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Robots find their applications in various fields and are used to perform repetitive and adaptive 
tasks very accurately. This requires exact kinematic parameters of the robot. Generally, for a serial 
robot, these parameters are represented using the Denavit-Hartenberg (DH) parameters, whose 
nominal values are provided by  the robot manufacturers. In this paper, a technique is proposed to 
determine the exact DH parameters of a serial robot. For this, each joint of the robot is rotated 
while the others are locked. Hence, the end-effector moves in a circle, which can be measured 
using external measurement devices, say a theodolite, a vision system or a laser scanner. From 
these measurements, the axis and center of the circles traced by the points are determined. If the 
joint axes are represented using dual vectors, the exact DH parameters can be extracted with the 
help of Dual Vector Algebra proposed here. The proposed technique has an advantage that it does 
not require any calibration of base frame of the robot with the measurement frame. Since, the 
technique allows one to determine the exact DH parameters at the site of installed robot, the robot 
need not to be taken to a separate calibration section. The proposed measurement methodology is 
simulated in a CAD software environment using the CAD model of a KUKA KR5 robot. 
 
1. INTRODUCTION 
 
Robots are used extensively in industries to perform various tasks, such as pick and place 
operation, welding, painting, insertion of components, etc. The robots were earlier used in         
teach-mode where several points to reach were taught by a trained personnel and the robots would 
repeatedly perform the tasks. As the robots typically have very high repeatability, these tasks can 
be performed satisfactorily. Now-a-days, robots also support program-mode in which the points 
and paths are defined through programs. The robots, however, have poorer accuracy, as compared 
to their repeatability and hence the tasks performed using a program may not be very accurate. So, 
there exists a need to improve the accuracy of the robot under study.  
 
The geometric model of a serial robot relates the transformations between the joint-space and the 
task-space. Note that the robots are generally controlled in the joint-space whereas the tasks are 
usually defined in the Cartesian space. Denavit-Hartenberg (DH) parameters [1] are generally used 
for the geometric representation of a serial robot. The DH parameters of an industrial robot are 
usually provided by the robot manufacturers either in the form of specifications or through 
engineering drawings. These parameters may not be the same in an actual robot due to 
manufacturing and assembling errors in components, fatigue of components or their wear and tear. 
As a result, if a robot is commanded to go to a configuration A, it would go to another 
configuration B. In order to improve its accuracy, identification of exact kinematic parameters and 
robot calibration are required. In the former, the exact kinematic parameters are determined by 
performing certain experiments and the measured parameters are used in the robot controller 
instead of the nominal parameters. If the controller cannot be modified, the determined parameters 
are used as nominal parameters in the Robot Calibration. An overview on Robot Calibration is 
given in Roth et al. [2]. In this paper, identification of exact kinematic parameters, particularly the 
DH parameters, is discussed. 



An analytical method to extract the DH parameters was proposed by Barker [3] using Vector 
Algebra. Though the method was simpler, no experimental validation was reported. A generic 
method was proposed by Hayati and Mirmirani [4] to estimate the DH parameters through a linear 
kinematic model which relates the error in link parameters with the end-effector positioning error. 
An extra parameter ߚ was added for parallel or near-parallel consecutive joint axes to avoid 
numerical instabilities during estimation. Another experimental method was proposed by 
Abderrahim and Whittaker [5], extending Stone’s model [6], and using Paul’s back-multiplication 
technique. Rousseau et al. [7] identified the DH parameters automatically using machine vision 
system by extending the method proposed by Hayati and Mirmirani [4], to closed kinematic 
chains. They proposed solving a system of nonlinear equations in order to determine the unknown 
parameters. All the reported work, except by Barker [3], used numerical techniques to solve the 
equations. In this paper, an identification technique is proposed to determine the exact DH 
parameters of a serial robot. It extends the analytical methodology developed by Rajeevlochana et 
al. [8] to determine the exact DH parameters using the Dual Vector Algebra and Plücker 
coordinates representation of lines in 3D space. Compared to Barker [3], the methodology has a 
very compact and elegant representation. The proposed measurements do not require base 
transformation of the measurement device, i.e., the calibration of measurement frame with respect 
to the base frame. Thus, it can be used efficiently in an industrial setup without disrupting much of 
the production process. As a proof of concept, measurements were performed in a simulated 
environment using a CAD assembly of an industrial robot namely KUKA KR5, and the results 
obtained matched closely with the given specifications. 
 
2. OVERVIEW 
 
In this section, the mathematical formulations used in the identification of actual DH parameters 
are discussed. 
 
2.1 Geometric model 
 
The DH parameters are generally used for the geometric modeling of a serial robot shown            
in Figure 1(a)  and defined in Table 1. A set of  four  DH parameters  relate  the  coordinate frames 
attached to two consecutive links of a robot are shown in Figure 1(b), where Frame (i+1) is 
attached to Link i, and Frame i is attached to Link (i-1). Detailed explanation and the rules of 
attaching the frames are given in Saha [9]. 
 

 
Figure 1.   Representation of DH parameters 
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Table 1.  Definition of DH parameters 
 

Parameter Description 
Joint Offset (bi) Distance between Xi and Xi+1 along Zi 
Joint Angle (θi) Angle between Xi and X i+1 about Zi 
Link Length (ai) Distance between Zi and Z i+1 along X i+1 
Twist Angle (αi) Angle between Zi and Z i+1 about X i+1 

 
 
2.2 Dual Vector Algebra 
 
A line in 3D space can be represented using a position vector p to a point P on the line and a free 
vector a as the direction of the line, as shown in Figure 2(a). Alternatively, one can use the concept 
of dual vector consisting of a real part and a dual part to relate the above vectors p and a to 
represent the same line in 3D space. The dual part has the dual entity ε, which is nilpotent, i.e.,      
ε2 = 0 [10]. A dual vector ࢇෝ is then expressed as 

ො܉ ൌ ܉   כ܉ߝ ൌ  ൣܽ௫ ܽ௬ ܽ௭൧T  ௫ܽൣߝ
כ ܽ௬

כ ܽ௭
൧Tכ

 (1) 

where ܉ is called the resultant vector and כ܉ is called the moment vector, which are related as 

כ܉ ൌ ܘ ൈ  (2) ܉

The six scalar quantities of Eq. (1), i.e., ܽ௫, ܽ௬, ܽ௭, ܽ௫
כ , ܽ௬

כ , and ܽ௭
כ  are nothing but the Plücker 

coordinates of a line. Dual Vector Algebra is often used in the field of displacement analysis, 
kinematic synthesis and dynamic analysis of spatial mechanisms as it produces concise and 
compact notations as reported in [11-12]. Operations on two dual vectors, say ܉ොଵ and ܉ොଶ shown in 
Figure 2(b) are performed similar to those on three dimension vectors. The dot- and cross-products 
of two dual vectors, also referred as line dot-and cross-products in Fischer [10], are defined by 

.ොଵ܉ ොଶ܉  ൌ ሺ܉ଵ  ଵ܉ߝ 
.ሻכ ሺ܉ଶ  ଶ܉ߝ

כ ሻ ൌ .ଵ܉ ଶ܉  .ଵ܉ሺߝ ଶ܉
כ  ଵ܉

.כ  ଶሻ (3)܉

ොଵ܉ ൈ ොଶ܉ ൌ ሺ܉ଵ  ଵ܉ߝ
ሻכ ൈ ሺ܉ଶ  ଶ܉ߝ

כ ሻ ൌ ଵ܉ ൈ ଶ܉  ଵ܉ሺߝ ൈ ଶ܉
כ  ଵ܉

כ ൈ  ଶሻ (4)܉

Note that the resultant of the dot-product of dual vectors is a dual number, consisting of two scalar 
values, instead of two vectors as in the case of a dual vector. 

 

Figure 2.  Representation of lines and plane using dual vectors and Plücker coordinates 
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The dot-product and cross-product between two dual vectors can be used to determine if two lines 
in 3D space, represented using dual vectors are parallel, intersecting or skewed as shown by 
Ketchel and Larochelle [13]. This concept was used to determine the DH parameters of a serial 
robot. Note here that the equation of a plane in generalized form is given by Eq. (5) in which 
,ߙ  are the components of the normal vector n to the plane and d is the scalar distance ߛ and ߚ
between the plane and the origin.  

ݔߙ  ݕߚ  ݖߛ  ݀ ൌ 0 (5) 

where, ߙ, ,ߚ ܖ form the normal vector ߛ ݀݊ܽ ൌ ሾߛ ߚ ߙሿT 
 
Moreover, the plane Π can be represented using the Plücker coordinates as in Eq. (6).  

Π ൌ ሾܖ  ݀ሿ  (6) 

Intersection of a line, represented using a dual vector ܉ො, and plane Π results in a point as shown in 
Figure 2(c), provided the line is not parallel to the plane. The expression for the point of 
intersection p is compact and given in [14] as 

ܘ ൌ
ܖ ൈ כ܉  ܉݀

.܉ ܖ  (7) 

 
2.3 Circle Fitting in 3D Space 
 
A circle in the 3D space can be fitted from the data of the points not lying exactly in a plane due to 
measurement errors. The methodology explained in this section is to determine the coordinates of 
the center of the circle and the direction of the normal to the plane containing the circle. To fit a 
circle, the following steps are to be undertaken. 
 
A set of m data points, say, (xi, yi, zi for i=1, 2, …,m), is to be measured using a technique 
explained in Section 3.2. This is used to form a matrix of data points M given in Eq. (8). The 
matrix M is then transformed with respect to the centroid of the data points obtained by taking the 
mean of m data points denoted by (x, y, z) . This forms a matrix N given in Eq. (8) 

 M

1 1 1

2 2 2

m m m

x y z

x y z

x y z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M M M
≡

m×3

;       N

1 1 1

2 2 2

m m m

x - x y - y z - z

x - x y - y z - z

x - x y - y z - z

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎣ ⎦

M M M

 m×3

 (8) 

The singular value decomposition (SVD) of matrix N will give two orthogonal matrices U and V 
and one diagonal matrix containing positive singular values of S, i.e., 

SVD(N) = 
T

×3 3×3m×m mU S V   (9) 

The first two columns of V ( )≡ 1 2 3v v v , namely 1 2andv   v , give an orthonormal basis for         

plane Π. The third column 3v  corresponding to the lowest singular value gives normal n. The data 



points are then transformed to the two-dimensional plane spanned by orthogonal basis 1 2andv   v . 
As reported by Shakarji [15], a least square fit of a circle to the (x, y) pairs will give the                  
center (c1, c2) and radius r. The equation of the circle is given by 

2 2 2
1 2 1 2 3or,   ( ) ) 2 2x - c +(y - c = r x + y = 2xc +2yc +k  (10) 

where 3 1 2
2 2 2k r - c - c≡ . The coordinates of the center (c1, c2) are then mapped back into the space 

of original data by taking the inner product of coordinates of the center to the plane Π. Further, the 
coordinates of the centroid are added to obtain the actual center C as [cx, cy, cz]T. 
 
3. IDENTIFICATION OF THE DH PARAMETERS 
 
The nominal DH parameters of serial robots are usually provided by the robot manufacturer either 
in the form of specifications or they can be determined from the diagram showing the dimensions 
and reach of the robot. The exact parameters however, can vary slightly from the nominal values 
and a need exists to determine those. 
 
3.1 Methodology 
 
An analytical methodology was proposed by Rajeevlochana et al. [8] to determine the exact DH 
parameters of a robot. For the sake of completeness, certain parts of it are presented in this section. 
For the Joint i of a serial robot, the unit vector parallel to its axes denoted with zi and a point on the 
axis pi are measured in a frame attached to the base-link, i.e., Link 0. These joint axes shown in      
Figure 3(a) are then represented as dual vectors.  
 

 
Figure 3.  Methodology to extract DH parameters (Rajeevlochana et al., [8]) 
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From the first joint, the consecutive joint axes are checked if they are parallel, intersecting or 
skewed with each other. At each iterative step i, the DH Frame i attached to Link (i-1) is known. 
The dual vector ܢොାଵ  corresponding to axis of Joint (i+1) is computed. Based on the type of 
relationship between joint axes, the origin Oi+1 of the next DH frame, i.e., Frame (i+1) is 
determined as intersection of lines. The common normal between the joint axes is then determined, 
which is the X axis of the next DH frame i.e., Xi+1. The axis Y i+1 is determined using the right-hand 
rule, thus Frame (i+1) is completely determined. The corresponding DH parameters are 
determined using vector algebra and trigonometric functions. A flowchart of the methodology is 
shown in Figure 3(b). 
 
3.2 Measurement Technique 
 
A measurement technique is proposed to determine the exact DH parameters of an actual robot. A 
fixture is to be attached on the last link, i.e., the end-effector, of the robot. A measurement device 
is to be placed at any arbitrary location, known as Measurement Frame M. From the first joint to 
the last, each joint is rotated, locking all others. The coordinates of the point E on fixture is 
measured in Frame M. Note that the measured points lie on a circle in 3D space. An example for 
rotation of Joint 1 is shown in Figure 4(a).  To determine the direction of normal of the plane 
containing the circle and its center, actually three measured points are sufficient for the 
corresponding joint. However, to have improved accuracy, the measurement of the point E is done 
for a larger number of points. The center and normal of the circles traced by rotation of each joint 
are determined using the Least Square Fit method as explained in Section 2.3. From several 
measured points on the base plane of the robot, the equation of base plane can be determined. 
 
Note here that the center of the circle corresponding to the motion of Joint 1 as in Figure 4(b) need 
not be at the bottom of the base-link. The point of intersection of the axis of Joint 1 i.e., ܢොଵ, with 
the base plane Π is determined as O1 using Eq. (7). This is to be considered as the origin of          
Frame 1 denoted as O1. 

 
Figure 4.  Proposed measurement technique for identification of DH parameters 
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Axis Y1 can then be determined using the right-hand rule so that the Frame 1 is completely known. 
The exact DH parameters of the robot under study can be obtained using the methodology 
explained in Section 3.1. Note here that Frame 1 and all dual vectors representing the joint axes are 
known in Frame M. Hence, no calibration with respect to the base frame is required, as necessary 
in some of the identification technique. 
 
4. EVALUATION OF THE IDENTIFICATION METHOD 
 
The proposed measurement technique was tested in a simulated environment. The CAD model of a 
KUKA KR5 industrial robot was imported inside Autodesk Inventor CAD software and a 
measurement Frame M was arbitrarily placed in the assembly environment. An Autodesk Inventor 
addin was developed using Visual C# to rotate the joints of the robot, one at a time. As the robot 
joints moved, the coordinates of the point on the end-effector fixture were measured in Frame M, 
as shown in Figure 5(a). Note that the point on the end-effector fixture should not be along the axis 
of Joint 6. Singular Value Decomposition and Least Square Fit operations were performed on 
these points using MATLAB to determine the position of joint axes. The exact DH parameters 
were then determined using the proposed methodology of Rajeevlochana et al., [8]  which is 
outlined in Figure 3(b). For the extraction, the identified DH frames are attached as shown in 
Figure 5(b). 
 
4.1 Simulation Results and Discussion 
 
To simulate the measurement process, two sets of random errors, having values of                                   
± 0.01 mm and ± 0.1 mm were induced with the measured data. The center and axis of the circles 
were determined and then the DH parameters were extracted as given in Table 2, along with the 
parameters obtained from the specifications of the robot.  
 

 
Figure 5. Identification of DH parameters of KUKA KR5 industrial robot 
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Table 2. Measured DH parameters and the specifications of a KUKA KR5 industrial robot 
 
Joint 
No. 

Joint Offset (b) 
(mm) 

Link Length (a) 
(mm) 

Twist Angle (α) 
(degree) 

 Specif-
ication 

Measured (with error) 
Specif-
ication 

Measured (with error) 
Specif-
icaiton 

Measured (with error) 

± 0.01 
mm 

± 0.1 
mm 

± 0.01 
mm 

± 0.1 
mm 

± 0.01 
mm 

± 0.1 
mm 

1 400 399.985 399.955 180 179.983 180.099 90 89.998 90.002 
2 0 0 0 600 600.006 599.992 0 0 0 
3 0 0.027 0.092 120 120.044 119.984 90 89.996 90.005 
4 620 620.036 620.144 0 0 0 90 89.996 90.023 
5 0 -0.131 -0.1 0 0 0 90 89.997 90.022 
6 0 0 0 0 0 0 0 0 0 

 

Note that as the joint angles are variables, they are not included in the comparison. The results are 
in close match with the specifications even though the errors were taken as high as ± 0.1 mm. 
Hence, the proposed methodology is suitable to be used with not so accurate measurement devices.  
The simulation of the measurement technique was required to know the range of accuracy of the 
measurement device required to perform actual measurement of the coordinates of the end-effector 
point. Accordingly, in future, measurements will be made from a suitable measuring device to 
determine the actual DH parameters of a KUKA KR5 industrial robot. 

5. CONCLUSION 

A robust measurement technique is proposed to determine the exact DH parameters of a serial 
robot. It is an application of the methodology proposed by Rajeevlochana et al., [8] which uses the 
concept of Dual Vector Algebra. A point on the end-effector of the robot is measured from an 
arbitrary measurement frame, when the joints of the robot are rotated one at a time, locking all 
others. The results were generated using simulation on the model of KUKA KR5 robot developed 
in Autodesk Inventor. The proposed measurement technique can be used to determine the exact 
DH parameters of an actual robot using a measurement device which has an accuracy of 0.1 mm or 
better. 
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